Llama CPP
Only available on Node.js.
This module is based on the node-llama-cpp Node.js bindings for llama.cpp, allowing you to work with a locally running LLM. This allows you to work with a much smaller quantized model capable of running on a laptop environment, ideal for testing and scratch padding ideas without running up a bill!
Setup
You'll need to install the node-llama-cpp module to communicate with your local model.
- npm
 - Yarn
 - pnpm
 
npm install -S node-llama-cpp
yarn add node-llama-cpp
pnpm add node-llama-cpp
You will also need a local Llama 2 model (or a model supported by node-llama-cpp). You will need to pass the path to this model to the LlamaCpp module as a part of the parameters (see example).
Out-of-the-box node-llama-cpp is tuned for running on a MacOS platform with support for the Metal GPU of Apple M-series of processors. If you need to turn this off or need support for the CUDA architecture then refer to the documentation at node-llama-cpp.
For advice on getting and preparing llama2 see the documentation for the LLM version of this module.
A note to LangChain.js contributors: if you want to run the tests associated with this module you will need to put the path to your local model in the environment variable LLAMA_PATH.
Usage
Basic use
In this case we pass in a prompt wrapped as a message and expect a response.
import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { HumanMessage } from "langchain/schema";
const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";
const model = new ChatLlamaCpp({ modelPath: llamaPath });
const response = await model.call([
  new HumanMessage({ content: "My name is John." }),
]);
console.log({ response });
/*
  AIMessage {
    lc_serializable: true,
    lc_kwargs: {
      content: 'Hello John.',
      additional_kwargs: {}
    },
    lc_namespace: [ 'langchain', 'schema' ],
    content: 'Hello John.',
    name: undefined,
    additional_kwargs: {}
  }
*/
API Reference:
- ChatLlamaCpp from 
langchain/chat_models/llama_cpp - HumanMessage from 
langchain/schema 
System messages
We can also provide a system message, note that with the llama_cpp module a system message will cause the creation of a new session.
import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { SystemMessage, HumanMessage } from "langchain/schema";
const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";
const model = new ChatLlamaCpp({ modelPath: llamaPath });
const response = await model.call([
  new SystemMessage(
    "You are a pirate, responses must be very verbose and in pirate dialect, add 'Arr, m'hearty!' to each sentence."
  ),
  new HumanMessage("Tell me where Llamas come from?"),
]);
console.log({ response });
/*
  AIMessage {
    lc_serializable: true,
    lc_kwargs: {
      content: "Arr, m'hearty! Llamas come from the land of Peru.",
      additional_kwargs: {}
    },
    lc_namespace: [ 'langchain', 'schema' ],
    content: "Arr, m'hearty! Llamas come from the land of Peru.",
    name: undefined,
    additional_kwargs: {}
  }
*/
API Reference:
- ChatLlamaCpp from 
langchain/chat_models/llama_cpp - SystemMessage from 
langchain/schema - HumanMessage from 
langchain/schema 
Chains
Finally we can also use this module with chains, note that using more complex chains will require suitably powerful version of llama2 such as the 70B version.
import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { PromptTemplate } from "langchain/prompts";
import { LLMChain } from "langchain/chains";
const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";
const model = new ChatLlamaCpp({ modelPath: llamaPath, temperature: 0.5 });
const prompt = PromptTemplate.fromTemplate(
  "What is a good name for a company that makes {product}?"
);
const chain = new LLMChain({ llm: model, prompt });
const response = await chain.call({ product: "colorful socks" });
console.log({ response });
/*
  {
  text: `I'm not sure what you mean by "colorful socks" but here are some ideas:\n` +
    '\n' +
    '- Sock-it to me!\n' +
    '- Socks Away\n' +
    '- Fancy Footwear'
  }
*/
API Reference:
- ChatLlamaCpp from 
langchain/chat_models/llama_cpp - PromptTemplate from 
langchain/prompts - LLMChain from 
langchain/chains