Pinecone
Compatibility
Only available on Node.js.
LangChain.js accepts @pinecone-database/pinecone as the client for Pinecone vectorstore. Install the library with:
- npm
 - Yarn
 - pnpm
 
npm install -S @pinecone-database/pinecone
yarn add @pinecone-database/pinecone
pnpm add @pinecone-database/pinecone
Index docs
import { Pinecone } from "@pinecone-database/pinecone";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { PineconeStore } from "langchain/vectorstores/pinecone";
// Instantiate a new Pinecone client, which will automatically read the
// env vars: PINECONE_API_KEY and PINECONE_ENVIRONMENT which come from
// the Pinecone dashboard at https://app.pinecone.io
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX);
const docs = [
  new Document({
    metadata: { foo: "bar" },
    pageContent: "pinecone is a vector db",
  }),
  new Document({
    metadata: { foo: "bar" },
    pageContent: "the quick brown fox jumped over the lazy dog",
  }),
  new Document({
    metadata: { baz: "qux" },
    pageContent: "lorem ipsum dolor sit amet",
  }),
  new Document({
    metadata: { baz: "qux" },
    pageContent: "pinecones are the woody fruiting body and of a pine tree",
  }),
];
await PineconeStore.fromDocuments(docs, new OpenAIEmbeddings(), {
  pineconeIndex,
  maxConcurrency: 5, // Maximum number of batch requests to allow at once. Each batch is 1000 vectors.
});
Query docs
import { Pinecone } from "@pinecone-database/pinecone";
import { VectorDBQAChain } from "langchain/chains";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { OpenAI } from "langchain/llms/openai";
import { PineconeStore } from "langchain/vectorstores/pinecone";
// Instantiate a new Pinecone client, which will automatically read the
// env vars: PINECONE_API_KEY and PINECONE_ENVIRONMENT which come from
// the Pinecone dashboard at https://app.pinecone.io
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX);
const vectorStore = await PineconeStore.fromExistingIndex(
  new OpenAIEmbeddings(),
  { pineconeIndex }
);
/* Search the vector DB independently with meta filters */
const results = await vectorStore.similaritySearch("pinecone", 1, {
  foo: "bar",
});
console.log(results);
/*
[
  Document {
    pageContent: 'pinecone is a vector db',
    metadata: { foo: 'bar' }
  }
]
*/
/* Use as part of a chain (currently no metadata filters) */
const model = new OpenAI();
const chain = VectorDBQAChain.fromLLM(model, vectorStore, {
  k: 1,
  returnSourceDocuments: true,
});
const response = await chain.call({ query: "What is pinecone?" });
console.log(response);
/*
{
  text: ' A pinecone is the woody fruiting body of a pine tree.',
  sourceDocuments: [
    Document {
      pageContent: 'pinecones are the woody fruiting body and of a pine tree',
      metadata: [Object]
    }
  ]
}
*/
Delete docs
import { Pinecone } from "@pinecone-database/pinecone";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { PineconeStore } from "langchain/vectorstores/pinecone";
// Instantiate a new Pinecone client, which will automatically read the
// env vars: PINECONE_API_KEY and PINECONE_ENVIRONMENT which come from
// the Pinecone dashboard at https://app.pinecone.io
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX);
const embeddings = new OpenAIEmbeddings();
const pineconeStore = new PineconeStore(embeddings, { pineconeIndex });
const docs = [
  new Document({
    metadata: { foo: "bar" },
    pageContent: "pinecone is a vector db",
  }),
  new Document({
    metadata: { foo: "bar" },
    pageContent: "the quick brown fox jumped over the lazy dog",
  }),
  new Document({
    metadata: { baz: "qux" },
    pageContent: "lorem ipsum dolor sit amet",
  }),
  new Document({
    metadata: { baz: "qux" },
    pageContent: "pinecones are the woody fruiting body and of a pine tree",
  }),
];
// Also takes an additional {ids: []} parameter for upsertion
const ids = await pineconeStore.addDocuments(docs);
const results = await pineconeStore.similaritySearch(pageContent, 2, {
  foo: "bar",
});
console.log(results);
/*
[
  Document {
    pageContent: 'pinecone is a vector db',
    metadata: { foo: 'bar' },
  },
  Document {
    pageContent: "the quick brown fox jumped over the lazy dog",
    metadata: { foo: "bar" },
  }
]
*/
await pineconeStore.delete({
  ids: [ids[0], ids[1]],
});
const results2 = await pineconeStore.similaritySearch(pageContent, 2, {
  foo: "bar",
});
console.log(results2);
/*
  []
*/
Maximal marginal relevance search
Pinecone supports maximal marginal relevance search, which takes a combination of documents that are most similar to the inputs, then reranks and optimizes for diversity.
import { Pinecone } from "@pinecone-database/pinecone";
import { VectorDBQAChain } from "langchain/chains";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { OpenAI } from "langchain/llms/openai";
import { PineconeStore } from "langchain/vectorstores/pinecone";
// Instantiate a new Pinecone client, which will automatically read the
// env vars: PINECONE_API_KEY and PINECONE_ENVIRONMENT which come from
// the Pinecone dashboard at https://app.pinecone.io
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX);
const vectorStore = await PineconeStore.fromExistingIndex(
  new OpenAIEmbeddings(),
  { pineconeIndex }
);
/* Search the vector DB independently with meta filters */
const results = await vectorStore.maxMarginalRelevance("pinecone", {
  k: 5,
  fetchK: 20, // Default value for the number of initial documents to fetch for reranking.
  // You can pass a filter as well
  // filter: {},
});
console.log(results);